EN

论文

当前位置: 首页 > 科学研究 > 科研成果 > 论文 > 正文

Random fuzzy mean-absolute deviation models for portfolio optimization problem with hybrid uncertainty

来源: | 发布时间:2017-07-12| 点击:

Random fuzzy mean-absolute deviation models for portfolio optimization problem with hybrid uncertainty

作者:Qin, ZF(Qin, Zhongfeng)

APPLIED SOFT COMPUTING

卷:56

页:597-603

DOI:10.1016/j.asoc.2016.06.017

出版年:JUL 2017

摘要

Absolutedeviationis a commonly used risk measure, which has attracted more attentions inportfoliooptimization. The existingmean-absolutedeviationmodelsare devoted to either stochasticportfoliooptimizationorfuzzyone. However, practical investment decision problems often involve the mixture of randomness and fuzziness such as stochastic returnswithfuzzyinformation. Thus it is necessary to modelportfolioselectionproblemin such ahybriduncertain environment. In this paper, we employrandomfuzzyvariables to describe the stochastic return on individual securitywithambiguous information. We first define the absolutedeviationofrandomfuzzyvariable and then employ it as risk measure to formulatemean-absolutedeviationportfoliooptimizationmodels. To find the optimalportfolio, we designrandomfuzzysimulation and simulation-based genetic algorithm to solve the proposedmodels. Finally, a numerical exampleforsynthetic data is presented to illustrate the validity of the method. (C) 2016 Elservier B.V. All rights reserved.

作者信息

通讯作者地址:Qin, ZF (通讯作者)

地址:

电子邮件地址:qin@buaa.edu.cn

出版商

ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

类别 / 分类

研究方向:Computer Science

Web of Science 类别:Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications

文献信息

文献类型:Article

语种:English

入藏号:WOS:000402364000045

ISSN:1568-4946

eISSN:1872-9681

downloadable full text - PDF