报告题目:A Network Game of Dynamic Traffic
报告人:曹志刚 助理研究员,中国科学院数学与系统科学研究院
时间:5月16日16:00—17:30
地点:A949
邀请人:崔志伟 副教授
摘要:We study a network congestion game of discrete-time dynamic traffic of atomic agents with a single origin-destination pair. Any agent freely makes a dynamic decision at each vertex (e.g., road crossing) and traffic is regulated with given priorities on edges (e.g., road segments). We first constructively prove that there always exists a subgame perfect equilibrium (SPE) in this game. We then study the relationship between this model and a simplified model, in which agents select and fix an origin-destination path simultaneously. We show that the set of Nash equilibrium (NE) flows of the simplified model is a proper subset of the set of SPE flows of our main model. We prove that each NE is also a strong NE and hence weakly Pareto optimal. We establish several other nice properties of NE flows, including global First-In-First-Out. Then for two classes of networks, including series-parallel ones, we show that the queue lengths at equilibrium are bounded at any given instance, which means the price of anarchy of any given game instance is bounded, provided that the inflow size never exceeds the network capacity.
经管学院科研办
2017-05-08